398 research outputs found

    Mahler measure of some n-variable polynomial families

    Get PDF
    The Mahler measures of some n-variable polynomial families are given in terms of special values of the Riemann zeta function and a Dirichlet L-series, generalizing the results of \cite{L}. The technique introduced in this work also motivates certain identities among Bernoulli numbers and symmetric functions

    The Volume of a Local Nodal Domain

    Full text link
    Let M either be a closed real analytic Riemannian manifold or a closed smooth Riemannian surface. We estimate from below the volume of a nodal domain component in an arbitrary ball provided that this component enters the ball deeply enough.Comment: 21 pages; introduction improved putting the problem in a larger context

    On an inverse problem for anisotropic conductivity in the plane

    Full text link
    Let Ω^R2\hat \Omega \subset \mathbb R^2 be a bounded domain with smooth boundary and σ^\hat \sigma a smooth anisotropic conductivity on Ω^\hat \Omega. Starting from the Dirichlet-to-Neumann operator Λσ^\Lambda_{\hat \sigma} on Ω^\partial \hat \Omega, we give an explicit procedure to find a unique domain Ω\Omega, an isotropic conductivity σ\sigma on Ω\Omega and the boundary values of a quasiconformal diffeomorphism F:Ω^ΩF:\hat \Omega \to \Omega which transforms σ^\hat \sigma into σ\sigma.Comment: 9 pages, no figur

    Large fluctuations in stochastic population dynamics: momentum space calculations

    Full text link
    Momentum-space representation renders an interesting perspective to theory of large fluctuations in populations undergoing Markovian stochastic gain-loss processes. This representation is obtained when the master equation for the probability distribution of the population size is transformed into an evolution equation for the probability generating function. Spectral decomposition then brings about an eigenvalue problem for a non-Hermitian linear differential operator. The ground-state eigenmode encodes the stationary distribution of the population size. For long-lived metastable populations which exhibit extinction or escape to another metastable state, the quasi-stationary distribution and the mean time to extinction or escape are encoded by the eigenmode and eigenvalue of the lowest excited state. If the average population size in the stationary or quasi-stationary state is large, the corresponding eigenvalue problem can be solved via WKB approximation amended by other asymptotic methods. We illustrate these ideas in several model examples.Comment: 20 pages, 9 figures, to appear in JSTA

    Hydrodynamic object recognition using pressure sensing

    No full text
    Hydrodynamic sensing is instrumental to fish and some amphibians. It also represents, for underwater vehicles, an alternative way of sensing the fluid environment when visual and acoustic sensing are limited. To assess the effectiveness of hydrodynamic sensing and gain insight into its capabilities and limitations, we investigated the forward and inverse problem of detection and identification, using the hydrodynamic pressure in the neighbourhood, of a stationary obstacle described using a general shape representation. Based on conformal mapping and a general normalization procedure, our obstacle representation accounts for all specific features of progressive perceptual hydrodynamic imaging reported experimentally. Size, location and shape are encoded separately. The shape representation rests upon an asymptotic series which embodies the progressive character of hydrodynamic imaging through pressure sensing. A dynamic filtering method is used to invert noisy nonlinear pressure signals for the shape parameters. The results highlight the dependence of the sensitivity of hydrodynamic sensing not only on the relative distance to the disturbance but also its bearing

    Nonrelativistic Chern-Simons Vortices on the Torus

    Full text link
    A classification of all periodic self-dual static vortex solutions of the Jackiw-Pi model is given. Physically acceptable solutions of the Liouville equation are related to a class of functions which we term Omega-quasi-elliptic. This class includes, in particular, the elliptic functions and also contains a function previously investigated by Olesen. Some examples of solutions are studied numerically and we point out a peculiar phenomenon of lost vortex charge in the limit where the period lengths tend to infinity, that is, in the planar limit.Comment: 25 pages, 2+3 figures; improved exposition, corrected typos, added one referenc

    Thurston's pullback map on the augmented Teichm\"uller space and applications

    Full text link
    Let ff be a postcritically finite branched self-cover of a 2-dimensional topological sphere. Such a map induces an analytic self-map σf\sigma_f of a finite-dimensional Teichm\"uller space. We prove that this map extends continuously to the augmented Teichm\"uller space and give an explicit construction for this extension. This allows us to characterize the dynamics of Thurston's pullback map near invariant strata of the boundary of the augmented Teichm\"uller space. The resulting classification of invariant boundary strata is used to prove a conjecture by Pilgrim and to infer further properties of Thurston's pullback map. Our approach also yields new proofs of Thurston's theorem and Pilgrim's Canonical Obstruction theorem.Comment: revised version, 28 page

    On a Watson-like Uniqueness Theorem and Gevrey Expansions

    Get PDF
    We present a maximal class of analytic functions, elements of which are in one-to-one correspondence with their asymptotic expansions. In recent decades it has been realized (B. Malgrange, J. Ecalle, J.-P. Ramis, Y. Sibuya et al.), that the formal power series solutions of a wide range of systems of ordinary (even non-linear) analytic differential equations are in fact the Gevrey expansions for the regular solutions. Watson's uniqueness theorem belongs to the foundations of this new theory. This paper contains a discussion of an extension of Watson's uniqueness theorem for classes of functions which admit a Gevrey expansion in angular regions of the complex plane with opening less than or equal to (\frac \pi k,) where (k) is the order of the Gevrey expansion. We present conditions which ensure uniqueness and which suggest an extension of Watson's representation theorem. These results may be applied for solutions of certain classes of differential equations to obtain the best accuracy estimate for the deviation of a solution from a finite sum of the corresponding Gevrey expansion.Comment: 18 pages, 4 figure

    Space as a low-temperature regime of graphs

    Full text link
    I define a statistical model of graphs in which 2-dimensional spaces arise at low temperature. The configurations are given by graphs with a fixed number of edges and the Hamiltonian is a simple, local function of the graphs. Simulations show that there is a transition between a low-temperature regime in which the graphs form triangulations of 2-dimensional surfaces and a high-temperature regime, where the surfaces disappear. I use data for the specific heat and other observables to discuss whether this is a phase transition. The surface states are analyzed with regard to topology and defects.Comment: 22 pages, 12 figures; v3: published version; J.Stat.Phys. 201

    Monte Carlo study of the hull distribution for the q=1 Brauer model

    Full text link
    We study a special case of the Brauer model in which every path of the model has weight q=1. The model has been studied before as a solvable lattice model and can be viewed as a Lorentz lattice gas. The paths of the model are also called self-avoiding trails. We consider the model in a triangle with boundary conditions such that one of the trails must cross the triangle from a corner to the opposite side. Motivated by similarities between this model, SLE(6) and critical percolation, we investigate the distribution of the hull generated by this trail (the set of points on or surrounded by the trail) up to the hitting time of the side of the triangle opposite the starting point. Our Monte Carlo results are consistent with the hypothesis that for system size tending to infinity, the hull distribution is the same as that of a Brownian motion with perpendicular reflection on the boundary.Comment: 21 pages, 9 figure
    corecore